Cargando…
Doubly Nonnegative and Semidefinite Relaxations for the Densest k-Subgraph Problem
The densest k-subgraph (DkS) maximization problem is to find a set of k vertices with maximum total weight of edges in the subgraph induced by this set. This problem is in general NP-hard. In this paper, two relaxation methods for solving the DkS problem are presented. One is doubly nonnegative rela...
Autores principales: | Guo, Chuan-Hao, Guo, Yuan, Liu, Bei-Bei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514591/ https://www.ncbi.nlm.nih.gov/pubmed/33266824 http://dx.doi.org/10.3390/e21020108 |
Ejemplares similares
-
Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs
por: Hu, Hao, et al.
Publicado: (2022) -
Densest subgraph-based methods for protein-protein interaction hot spot prediction
por: Li, Ruiming, et al.
Publicado: (2022) -
A novel algorithm for finding top-k weighted overlapping densest connected subgraphs in dual networks
por: Dondi, Riccardo, et al.
Publicado: (2021) -
A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion
por: Bellavia, Stefania, et al.
Publicado: (2021) -
On the Densest Packing of Polycylinders in Any Dimension
por: Kusner, Wöden
Publicado: (2016)