Cargando…

An Optimal Resonant Frequency Band Feature Extraction Method Based on Empirical Wavelet Transform

The Empirical Wavelet Transform (EWT), which has a reliable mathematical derivation process and can adaptively decompose signals, has been widely used in mechanical applications, EEG, seismic detection and other fields. However, the EWT still faces the problem of how to optimally divide the Fourier...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Zezhong, Ma, Jun, Wang, Xiaodong, Wu, Jiande, Zhou, Chengjiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514622/
https://www.ncbi.nlm.nih.gov/pubmed/33266851
http://dx.doi.org/10.3390/e21020135
Descripción
Sumario:The Empirical Wavelet Transform (EWT), which has a reliable mathematical derivation process and can adaptively decompose signals, has been widely used in mechanical applications, EEG, seismic detection and other fields. However, the EWT still faces the problem of how to optimally divide the Fourier spectrum during the application process. When there is noise interference in the analyzed signal, the parameterless scale-space histogram method will divide the spectrum into a variety of narrow bands, which will weaken or even fail to extract the fault modulation information. To accurately determine the optimal resonant demodulation frequency band, this paper proposes a method for applying Adaptive Average Spectral Negentropy (AASN) to EWT analysis (AEWT): Firstly, the spectrum is segmented by the parameterless clustering scale-space histogram method to obtain the corresponding empirical mode. Then, by comprehensively considering the Average Spectral Negentropy (ASN) index and correlation coefficient index on each mode, the correlation coefficient is used to adjust the ASN value of each mode, and the IMF with the highest value is used as the center frequency band of the fault information. Finally, a new resonant frequency band is reconstructed for the envelope demodulation analysis. The experimental results of different background noise intensities show that the proposed method can effectively detect the repetitive transients in the signal.