Cargando…
A Neighborhood Rough Sets-Based Attribute Reduction Method Using Lebesgue and Entropy Measures
For continuous numerical data sets, neighborhood rough sets-based attribute reduction is an important step for improving classification performance. However, most of the traditional reduction algorithms can only handle finite sets, and yield low accuracy and high cardinality. In this paper, a novel...
Autores principales: | Sun, Lin, Wang, Lanying, Xu, Jiucheng, Zhang, Shiguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514624/ https://www.ncbi.nlm.nih.gov/pubmed/33266854 http://dx.doi.org/10.3390/e21020138 |
Ejemplares similares
-
An Attribute Reduction Method Using Neighborhood Entropy Measures in Neighborhood Rough Sets
por: Sun, Lin, et al.
Publicado: (2019) -
A Gene selection approach based on the fisher linear discriminant and the neighborhood rough set
por: Sun, Lin, et al.
Publicado: (2017) -
Lebesgue integration and measure
por: Weir, Alan J
Publicado: (1973) -
Paradoxical characterization of Lebesgue nonmeasurable sets
por: Kruk, Łukasz
Publicado: (2020) -
The theory of Lebesgue measure and integration
por: Hartman, S, et al.
Publicado: (1961)