Cargando…
Joint Deep Model with Multi-Level Attention and Hybrid-Prediction for Recommendation †
The Recommender System (RS) has obtained a pivotal role in e-commerce. To improve the performance of RS, review text information has been extensively utilized. However, it is still a challenge for RS to extract the most informative feature from a tremendous amount of reviews. Another significant iss...
Autores principales: | Lin, Zhipeng, Tang, Yuhua, Zhang, Yongjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514625/ https://www.ncbi.nlm.nih.gov/pubmed/33266859 http://dx.doi.org/10.3390/e21020143 |
Ejemplares similares
-
Relation-Based Deep Attention Network with Hybrid Memory for One-Shot Person Re-Identification
por: Si, Runxuan, et al.
Publicado: (2021) -
Deep-Cross-Attention Recommendation Model for Knowledge Sharing Micro Learning Service
por: Lin, Jiayin, et al.
Publicado: (2020) -
ADH-PPI: An attention-based deep hybrid model for protein-protein interaction prediction
por: Asim, Muhammad Nabeel, et al.
Publicado: (2022) -
Deep learning personalized recommendation-based construction method of hybrid blockchain model
por: Yu, Xiaomo, et al.
Publicado: (2023) -
Modality attention fusion model with hybrid multi-head self-attention for video understanding
por: Zhuang, Xuqiang, et al.
Publicado: (2022)