Cargando…

A Robust Adaptive Filter for a Complex Hammerstein System

The Hammerstein adaptive filter using maximum correntropy criterion (MCC) has been shown to be more robust to outliers than the ones using the traditional mean square error (MSE) criterion. As there is no report on the robust Hammerstein adaptive filters in the complex domain, in this paper, we deve...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Guobing, Luo, Dan, Wang, Shiyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514644/
https://www.ncbi.nlm.nih.gov/pubmed/33266878
http://dx.doi.org/10.3390/e21020162
Descripción
Sumario:The Hammerstein adaptive filter using maximum correntropy criterion (MCC) has been shown to be more robust to outliers than the ones using the traditional mean square error (MSE) criterion. As there is no report on the robust Hammerstein adaptive filters in the complex domain, in this paper, we develop the robust Hammerstein adaptive filter under MCC to the complex domain, and propose the Hammerstein maximum complex correntropy criterion (HMCCC) algorithm. Thus, the new Hammerstein adaptive filter can be used to directly handle the complex-valued data. Additionally, we analyze the stability and steady-state mean square performance of HMCCC. Simulations illustrate that the proposed HMCCC algorithm is convergent in the impulsive noise environment, and achieves a higher accuracy and faster convergence speed than the Hammerstein complex least mean square (HCLMS) algorithm.