Cargando…
Mixture of Experts with Entropic Regularization for Data Classification
Today, there is growing interest in the automatic classification of a variety of tasks, such as weather forecasting, product recommendations, intrusion detection, and people recognition. “Mixture-of-experts” is a well-known classification technique; it is a probabilistic model consisting of local ex...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514672/ https://www.ncbi.nlm.nih.gov/pubmed/33266905 http://dx.doi.org/10.3390/e21020190 |
Sumario: | Today, there is growing interest in the automatic classification of a variety of tasks, such as weather forecasting, product recommendations, intrusion detection, and people recognition. “Mixture-of-experts” is a well-known classification technique; it is a probabilistic model consisting of local expert classifiers weighted by a gate network that is typically based on softmax functions, combined with learnable complex patterns in data. In this scheme, one data point is influenced by only one expert; as a result, the training process can be misguided in real datasets for which complex data need to be explained by multiple experts. In this work, we propose a variant of the regular mixture-of-experts model. In the proposed model, the cost classification is penalized by the Shannon entropy of the gating network in order to avoid a “winner-takes-all” output for the gating network. Experiments show the advantage of our approach using several real datasets, with improvements in mean accuracy of 3–6% in some datasets. In future work, we plan to embed feature selection into this model. |
---|