Cargando…

A Simple Secret Key Generation by Using a Combination of Pre-Processing Method with a Multilevel Quantization

Limitations of the computational and energy capabilities of IoT devices provide new challenges in securing communication between devices. Physical layer security (PHYSEC) is one of the solutions that can be used to solve the communication security challenges. In this paper, we conducted an investiga...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuliana, Mike, Wirawan, Suwadi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514674/
https://www.ncbi.nlm.nih.gov/pubmed/33266907
http://dx.doi.org/10.3390/e21020192
Descripción
Sumario:Limitations of the computational and energy capabilities of IoT devices provide new challenges in securing communication between devices. Physical layer security (PHYSEC) is one of the solutions that can be used to solve the communication security challenges. In this paper, we conducted an investigation on PHYSEC which utilizes channel reciprocity in generating a secret key, commonly known as secret key generation (SKG) schemes. Our research focused on the efforts to get a simple SKG scheme by eliminating the information reconciliation stage so as to reduce the high computational and communication cost. We exploited the pre-processing method by proposing a modified Kalman (MK) and performing a combination of the method with a multilevel quantization, i.e., combined multilevel quantization (CMQ). Our approach produces a simple SKG scheme for its significant increase in reciprocity so that an identical secret key between two legitimate users can be obtained without going through the information reconciliation stage.