Cargando…
Centroid-Based Clustering with αβ-Divergences
Centroid-based clustering is a widely used technique within unsupervised learning algorithms in many research fields. The success of any centroid-based clustering relies on the choice of the similarity measure under use. In recent years, most studies focused on including several divergence measures...
Autores principales: | Sarmiento, Auxiliadora, Fondón, Irene, Durán-Díaz, Iván, Cruces, Sergio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514678/ https://www.ncbi.nlm.nih.gov/pubmed/33266911 http://dx.doi.org/10.3390/e21020196 |
Ejemplares similares
-
A Method for Unsupervised Semi-Quantification of Inmunohistochemical Staining with Beta Divergences
por: Sarmiento, Auxiliadora, et al.
Publicado: (2022) -
On a Generalization of the Jensen–Shannon Divergence and the Jensen–Shannon Centroid
por: Nielsen, Frank
Publicado: (2020) -
The Gibbs Centroid Sampler
por: Thompson, William A., et al.
Publicado: (2007) -
Centroid based clustering of high throughput sequencing reads based on n-mer counts
por: Solovyov, Alexander, et al.
Publicado: (2013) -
Generalized Centroid Estimators in Bioinformatics
por: Hamada, Michiaki, et al.
Publicado: (2011)