Cargando…
Attribute Selection Based on Constraint Gain and Depth Optimal for a Decision Tree
Uncertainty evaluation based on statistical probabilistic information entropy is a commonly used mechanism for a heuristic method construction of decision tree learning. The entropy kernel potentially links its deviation and decision tree classification performance. This paper presents a decision tr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514679/ https://www.ncbi.nlm.nih.gov/pubmed/33266913 http://dx.doi.org/10.3390/e21020198 |
Sumario: | Uncertainty evaluation based on statistical probabilistic information entropy is a commonly used mechanism for a heuristic method construction of decision tree learning. The entropy kernel potentially links its deviation and decision tree classification performance. This paper presents a decision tree learning algorithm based on constrained gain and depth induction optimization. Firstly, the calculation and analysis of single- and multi-value event uncertainty distributions of information entropy is followed by an enhanced property of single-value event entropy kernel and multi-value event entropy peaks as well as a reciprocal relationship between peak location and the number of possible events. Secondly, this study proposed an estimated method for information entropy whose entropy kernel is replaced with a peak-shift sine function to establish a decision tree learning (CGDT) algorithm on the basis of constraint gain. Finally, by combining branch convergence and fan-out indices under an inductive depth of a decision tree, we built a constraint gained and depth inductive improved decision tree (CGDIDT) learning algorithm. Results show the benefits of the CGDT and CGDIDT algorithms. |
---|