Cargando…
Attribute Selection Based on Constraint Gain and Depth Optimal for a Decision Tree
Uncertainty evaluation based on statistical probabilistic information entropy is a commonly used mechanism for a heuristic method construction of decision tree learning. The entropy kernel potentially links its deviation and decision tree classification performance. This paper presents a decision tr...
Autores principales: | Sun, Huaining, Hu, Xuegang, Zhang, Yuhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514679/ https://www.ncbi.nlm.nih.gov/pubmed/33266913 http://dx.doi.org/10.3390/e21020198 |
Ejemplares similares
-
On the Depth of Decision Trees with Hypotheses
por: Moshkov, Mikhail
Publicado: (2022) -
Optimal placement of tsunami sensors with depth constraint
por: Magdalena, Ikha, et al.
Publicado: (2021) -
Constraint-Based Optimized Human Skeleton Extraction from Single-Depth Camera
por: Li, Ruotong, et al.
Publicado: (2019) -
Applications of Depth Minimization of Decision Trees Containing Hypotheses for Multiple-Value Decision Tables
por: Azad, Mohammad, et al.
Publicado: (2023) -
Robust Depth Estimation and Image Fusion Based on Optimal Area Selection
por: Lee, Ik-Hyun, et al.
Publicado: (2013)