Cargando…
Data Discovery and Anomaly Detection Using Atypicality for Real-Valued Data
The aim of using atypicality is to extract small, rare, unusual and interesting pieces out of big data. This complements statistics about typical data to give insight into data. In order to find such “interesting” parts of data, universal approaches are required, since it is not known in advance wha...
Autores principales: | Sabeti, Elyas, Høst-Madsen, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514700/ https://www.ncbi.nlm.nih.gov/pubmed/33266935 http://dx.doi.org/10.3390/e21030219 |
Ejemplares similares
-
A Pattern Dictionary Method for Anomaly Detection
por: Sabeti, Elyas, et al.
Publicado: (2022) -
Geometric anomaly detection in data
por: Stolz, Bernadette J., et al.
Publicado: (2020) -
Towards Real Time Epidemiology: Data Assimilation, Modeling and Anomaly Detection of Health Surveillance Data Streams
por: Bettencourt, Luís M. A., et al.
Publicado: (2007) -
Real-Time Maritime Traffic Anomaly Detection Based on Sensors and History Data Embedding
por: Venskus, Julius, et al.
Publicado: (2019) -
Anomaly Detection in Time Series Data Using Reversible Instance Normalized Anomaly Transformer
por: Baidya, Ranjai, et al.
Publicado: (2023)