Cargando…
Supervised and Unsupervised End-to-End Deep Learning for Gene Ontology Classification of Neural In Situ Hybridization Images †
In recent years, large datasets of high-resolution mammalian neural images have become available, which has prompted active research on the analysis of gene expression data. Traditional image processing methods are typically applied for learning functional representations of genes, based on their ex...
Autores principales: | Cohen, Ido, David, Eli (Omid), Netanyahu, Nathan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514702/ https://www.ncbi.nlm.nih.gov/pubmed/33266936 http://dx.doi.org/10.3390/e21030221 |
Ejemplares similares
-
End-to-End Deep Neural Networks and Transfer Learning for Automatic Analysis of Nation-State Malware
por: Rosenberg, Ishai, et al.
Publicado: (2018) -
Unsupervised End-to-End Deep Model for Newborn and Infant Activity Recognition
por: Jun, Kyungkoo, et al.
Publicado: (2020) -
Matching sensor ontologies with unsupervised neural network with competitive learning
por: Xue, Xingsi, et al.
Publicado: (2021) -
Task-Driven Learned Hyperspectral Data Reduction Using End-to-End Supervised Deep Learning
por: Zeegers, Mathé T., et al.
Publicado: (2020) -
Supervised versus unsupervised approaches to classification of accelerometry data
por: Sur, Maitreyi, et al.
Publicado: (2023)