Cargando…

Peltier Supercooling in Transient Thermoelectrics: Spatial Temperature Profile and Characteristic Cooling Length

Thermoelectric coolers (TECs) can reach temperatures below that obtained with a steady-state current by applying an electrical current pulse which enables a transitory state in a Peltier device. This effect is known as supercooling. In this paper, we study characteristics parameters, such as the min...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruiz-Ortega, Pablo Eduardo, Olivares-Robles, Miguel Angel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514707/
https://www.ncbi.nlm.nih.gov/pubmed/33266941
http://dx.doi.org/10.3390/e21030226
Descripción
Sumario:Thermoelectric coolers (TECs) can reach temperatures below that obtained with a steady-state current by applying an electrical current pulse which enables a transitory state in a Peltier device. This effect is known as supercooling. In this paper, we study characteristics parameters, such as the minimum cooling temperature and spatial temperature profile, in a TEC operated under current pulses and a cooling load [Formula: see text]. Numerical analysis for a one-dimensional thermoelectric model of the cooling system is developed, and a novel MATLAB programming code is proposed for the transient state based on finite element analysis. We also investigate the influence of the thermoelement’s length upon the cooling mechanism. A new parameter called the “characteristic cooling length” is proposed to describe the length in which the minimum cooling temperature occurs along the elements of a TEM. Results show the transient temperature profiles along the elements of the semiconductor P-type element, and a “characteristic cooling length” is characterized. We also propose a general principle, and the lowest cooling temperature values are obtained for a semiconductor’s small length and variable pulse cooling load under current pulse operation. The present study will serve as guidance for the geometric design of TECs under current pulse operations.