Cargando…

Bayesian Compressive Sensing of Sparse Signals with Unknown Clustering Patterns

We consider the sparse recovery problem of signals with an unknown clustering pattern in the context of multiple measurement vectors (MMVs) using the compressive sensing (CS) technique. For many MMVs in practice, the solution matrix exhibits some sort of clustered sparsity pattern, or clumpy behavio...

Descripción completa

Detalles Bibliográficos
Autores principales: Shekaramiz, Mohammad, Moon, Todd K., Gunther, Jacob H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514728/
https://www.ncbi.nlm.nih.gov/pubmed/33266961
http://dx.doi.org/10.3390/e21030247
Descripción
Sumario:We consider the sparse recovery problem of signals with an unknown clustering pattern in the context of multiple measurement vectors (MMVs) using the compressive sensing (CS) technique. For many MMVs in practice, the solution matrix exhibits some sort of clustered sparsity pattern, or clumpy behavior, along each column, as well as joint sparsity across the columns. In this paper, we propose a new sparse Bayesian learning (SBL) method that incorporates a total variation-like prior as a measure of the overall clustering pattern in the solution. We further incorporate a parameter in this prior to account for the emphasis on the amount of clumpiness in the supports of the solution to improve the recovery performance of sparse signals with an unknown clustering pattern. This parameter does not exist in the other existing algorithms and is learned via our hierarchical SBL algorithm. While the proposed algorithm is constructed for the MMVs, it can also be applied to the single measurement vector (SMV) problems. Simulation results show the effectiveness of our algorithm compared to other algorithms for both SMV and MMVs.