Cargando…

Informed Weighted Non-Negative Matrix Factorization Using αβ-Divergence Applied to Source Apportionment

In this paper, we propose informed weighted non-negative matrix factorization (NMF) methods using an [Formula: see text]-divergence cost function. The available information comes from the exact knowledge/boundedness of some components of the factorization—which are used to structure the NMF paramete...

Descripción completa

Detalles Bibliográficos
Autores principales: Delmaire, Gilles, Omidvar, Mahmoud, Puigt, Matthieu, Ledoux, Frédéric, Limem, Abdelhakim, Roussel, Gilles, Courcot, Dominique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514734/
https://www.ncbi.nlm.nih.gov/pubmed/33266967
http://dx.doi.org/10.3390/e21030253
_version_ 1783586656645808128
author Delmaire, Gilles
Omidvar, Mahmoud
Puigt, Matthieu
Ledoux, Frédéric
Limem, Abdelhakim
Roussel, Gilles
Courcot, Dominique
author_facet Delmaire, Gilles
Omidvar, Mahmoud
Puigt, Matthieu
Ledoux, Frédéric
Limem, Abdelhakim
Roussel, Gilles
Courcot, Dominique
author_sort Delmaire, Gilles
collection PubMed
description In this paper, we propose informed weighted non-negative matrix factorization (NMF) methods using an [Formula: see text]-divergence cost function. The available information comes from the exact knowledge/boundedness of some components of the factorization—which are used to structure the NMF parameterization—together with the row sum-to-one property of one matrix factor. In this contribution, we extend our previous work which partly involved some of these aspects to [Formula: see text]-divergence cost functions. We derive new update rules which are extendthe previous ones and take into account the available information. Experiments conducted for several operating conditions on realistic simulated mixtures of particulate matter sources show the relevance of these approaches. Results from a real dataset campaign are also presented and validated with expert knowledge.
format Online
Article
Text
id pubmed-7514734
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75147342020-11-09 Informed Weighted Non-Negative Matrix Factorization Using αβ-Divergence Applied to Source Apportionment Delmaire, Gilles Omidvar, Mahmoud Puigt, Matthieu Ledoux, Frédéric Limem, Abdelhakim Roussel, Gilles Courcot, Dominique Entropy (Basel) Article In this paper, we propose informed weighted non-negative matrix factorization (NMF) methods using an [Formula: see text]-divergence cost function. The available information comes from the exact knowledge/boundedness of some components of the factorization—which are used to structure the NMF parameterization—together with the row sum-to-one property of one matrix factor. In this contribution, we extend our previous work which partly involved some of these aspects to [Formula: see text]-divergence cost functions. We derive new update rules which are extendthe previous ones and take into account the available information. Experiments conducted for several operating conditions on realistic simulated mixtures of particulate matter sources show the relevance of these approaches. Results from a real dataset campaign are also presented and validated with expert knowledge. MDPI 2019-03-06 /pmc/articles/PMC7514734/ /pubmed/33266967 http://dx.doi.org/10.3390/e21030253 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Delmaire, Gilles
Omidvar, Mahmoud
Puigt, Matthieu
Ledoux, Frédéric
Limem, Abdelhakim
Roussel, Gilles
Courcot, Dominique
Informed Weighted Non-Negative Matrix Factorization Using αβ-Divergence Applied to Source Apportionment
title Informed Weighted Non-Negative Matrix Factorization Using αβ-Divergence Applied to Source Apportionment
title_full Informed Weighted Non-Negative Matrix Factorization Using αβ-Divergence Applied to Source Apportionment
title_fullStr Informed Weighted Non-Negative Matrix Factorization Using αβ-Divergence Applied to Source Apportionment
title_full_unstemmed Informed Weighted Non-Negative Matrix Factorization Using αβ-Divergence Applied to Source Apportionment
title_short Informed Weighted Non-Negative Matrix Factorization Using αβ-Divergence Applied to Source Apportionment
title_sort informed weighted non-negative matrix factorization using αβ-divergence applied to source apportionment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514734/
https://www.ncbi.nlm.nih.gov/pubmed/33266967
http://dx.doi.org/10.3390/e21030253
work_keys_str_mv AT delmairegilles informedweightednonnegativematrixfactorizationusingabdivergenceappliedtosourceapportionment
AT omidvarmahmoud informedweightednonnegativematrixfactorizationusingabdivergenceappliedtosourceapportionment
AT puigtmatthieu informedweightednonnegativematrixfactorizationusingabdivergenceappliedtosourceapportionment
AT ledouxfrederic informedweightednonnegativematrixfactorizationusingabdivergenceappliedtosourceapportionment
AT limemabdelhakim informedweightednonnegativematrixfactorizationusingabdivergenceappliedtosourceapportionment
AT rousselgilles informedweightednonnegativematrixfactorizationusingabdivergenceappliedtosourceapportionment
AT courcotdominique informedweightednonnegativematrixfactorizationusingabdivergenceappliedtosourceapportionment