Cargando…
Maximum-Entropy Priors with Derived Parameters in a Specified Distribution
We propose a method for transforming probability distributions so that parameters of interest are forced into a specified distribution. We prove that this approach is the maximum-entropy choice, and provide a motivating example, applicable to neutrino-hierarchy inference.
Autores principales: | Handley, Will, Millea, Marius |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514752/ https://www.ncbi.nlm.nih.gov/pubmed/33266987 http://dx.doi.org/10.3390/e21030272 |
Ejemplares similares
-
Bayesian Inference in Auditing with Partial Prior Information Using Maximum Entropy Priors
por: Martel-Escobar, María, et al.
Publicado: (2018) -
The principle of maximum entropy and the probability-weighted moments for estimating the parameters of the Kumaraswamy distribution
por: Helu, Amal
Publicado: (2022) -
Maximum entropy distributions with quantile information
por: Bajgiran, Amirsaman H., et al.
Publicado: (2021) -
Extensions of positive-definite distributions and maximum entropy
por: Gabardo, Jean-Pierre
Publicado: (2014) -
A Maximum Entropy Method for the Prediction of Size Distributions
por: Metzig, Cornelia, et al.
Publicado: (2020)