Cargando…
Data-Rate Constrained Observers of Nonlinear Systems
In this paper, the design of a data-rate constrained observer for a dynamical system is presented. This observer is designed to function both in discrete time and continuous time. The system is connected to a remote location via a communication channel which can transmit limited amounts of data per...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514762/ https://www.ncbi.nlm.nih.gov/pubmed/33266997 http://dx.doi.org/10.3390/e21030282 |
_version_ | 1783586663360888832 |
---|---|
author | Voortman, Quentin Pogromsky, Alexander Yu. Matveev, Alexey S. Nijmeijer, Henk |
author_facet | Voortman, Quentin Pogromsky, Alexander Yu. Matveev, Alexey S. Nijmeijer, Henk |
author_sort | Voortman, Quentin |
collection | PubMed |
description | In this paper, the design of a data-rate constrained observer for a dynamical system is presented. This observer is designed to function both in discrete time and continuous time. The system is connected to a remote location via a communication channel which can transmit limited amounts of data per unit of time. The objective of the observer is to provide estimates of the state at the remote location through messages that are sent via the channel. The observer is designed such that it is robust toward losses in the communication channel. Upper bounds on the required communication rate to implement the observer are provided in terms of the upper box dimension of the state space and an upper bound on the largest singular value of the system’s Jacobian. Results that provide an analytical bound on the required minimum communication rate are then presented. These bounds are obtained by using the Lyapunov dimension of the dynamical system rather than the upper box dimension in the rate. The observer is tested through simulations for the Lozi map and the Lorenz system. For the Lozi map, the Lyapunov dimension is computed. For both systems, the theoretical bounds on the communication rate are compared to the simulated rates. |
format | Online Article Text |
id | pubmed-7514762 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75147622020-11-09 Data-Rate Constrained Observers of Nonlinear Systems Voortman, Quentin Pogromsky, Alexander Yu. Matveev, Alexey S. Nijmeijer, Henk Entropy (Basel) Article In this paper, the design of a data-rate constrained observer for a dynamical system is presented. This observer is designed to function both in discrete time and continuous time. The system is connected to a remote location via a communication channel which can transmit limited amounts of data per unit of time. The objective of the observer is to provide estimates of the state at the remote location through messages that are sent via the channel. The observer is designed such that it is robust toward losses in the communication channel. Upper bounds on the required communication rate to implement the observer are provided in terms of the upper box dimension of the state space and an upper bound on the largest singular value of the system’s Jacobian. Results that provide an analytical bound on the required minimum communication rate are then presented. These bounds are obtained by using the Lyapunov dimension of the dynamical system rather than the upper box dimension in the rate. The observer is tested through simulations for the Lozi map and the Lorenz system. For the Lozi map, the Lyapunov dimension is computed. For both systems, the theoretical bounds on the communication rate are compared to the simulated rates. MDPI 2019-03-14 /pmc/articles/PMC7514762/ /pubmed/33266997 http://dx.doi.org/10.3390/e21030282 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Voortman, Quentin Pogromsky, Alexander Yu. Matveev, Alexey S. Nijmeijer, Henk Data-Rate Constrained Observers of Nonlinear Systems |
title | Data-Rate Constrained Observers of Nonlinear Systems |
title_full | Data-Rate Constrained Observers of Nonlinear Systems |
title_fullStr | Data-Rate Constrained Observers of Nonlinear Systems |
title_full_unstemmed | Data-Rate Constrained Observers of Nonlinear Systems |
title_short | Data-Rate Constrained Observers of Nonlinear Systems |
title_sort | data-rate constrained observers of nonlinear systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514762/ https://www.ncbi.nlm.nih.gov/pubmed/33266997 http://dx.doi.org/10.3390/e21030282 |
work_keys_str_mv | AT voortmanquentin datarateconstrainedobserversofnonlinearsystems AT pogromskyalexanderyu datarateconstrainedobserversofnonlinearsystems AT matveevalexeys datarateconstrainedobserversofnonlinearsystems AT nijmeijerhenk datarateconstrainedobserversofnonlinearsystems |