Cargando…
Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital Cardiac Arrest
The automatic detection of pulse during out-of-hospital cardiac arrest (OHCA) is necessary for the early recognition of the arrest and the detection of return of spontaneous circulation (end of the arrest). The only signal available in every single defibrillator and valid for the detection of pulse...
Autores principales: | Elola, Andoni, Aramendi, Elisabete, Irusta, Unai, Picón, Artzai, Alonso, Erik, Owens, Pamela, Idris, Ahamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514786/ https://www.ncbi.nlm.nih.gov/pubmed/33267020 http://dx.doi.org/10.3390/e21030305 |
Ejemplares similares
-
A Machine Learning Model for the Prognosis of Pulseless Electrical Activity during Out-of-Hospital Cardiac Arrest
por: Urteaga, Jon, et al.
Publicado: (2021) -
Towards the Prediction of Rearrest during Out-of-Hospital Cardiac Arrest
por: Elola, Andoni, et al.
Publicado: (2020) -
Analysis of Few-Shot Techniques for Fungal Plant Disease Classification and Evaluation of Clustering Capabilities Over Real Datasets
por: Egusquiza, Itziar, et al.
Publicado: (2022) -
Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia
por: Picon, Artzai, et al.
Publicado: (2019) -
Fuzzy and Sample Entropies as Predictors of Patient Survival Using Short Ventricular Fibrillation Recordings during out of Hospital Cardiac Arrest
por: Chicote, Beatriz, et al.
Publicado: (2018)