Cargando…
MVMD-MOMEDA-TEO Model and Its Application in Feature Extraction for Rolling Bearings
In order to extract fault features of rolling bearings to characterize their operation state effectively, an improved method, based on modified variational mode decomposition (MVMD) and multipoint optimal minimum entropy deconvolution adjusted (MOMEDA), is proposed. Firstly, the MVMD method is intro...
Autores principales: | Li, Zhuorui, Ma, Jun, Wang, Xiaodong, Wu, Jiande |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514815/ https://www.ncbi.nlm.nih.gov/pubmed/33267045 http://dx.doi.org/10.3390/e21040331 |
Ejemplares similares
-
A Rolling Bearing Fault Feature Extraction Algorithm Based on IPOA-VMD and MOMEDA
por: Yi, Kang, et al.
Publicado: (2023) -
An Optimal Parameter Selection Method for MOMEDA Based on EHNR and Its Spectral Entropy
por: Li, Zhuorui, et al.
Publicado: (2021) -
Application of Adaptive MOMEDA with Iterative Autocorrelation to Enhance Weak Features of Hoist Bearings
por: Li, Tengyu, et al.
Publicado: (2021) -
GMPSO-VMD Algorithm and Its Application to Rolling Bearing Fault Feature Extraction
por: Ding, Jiakai, et al.
Publicado: (2020) -
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram
por: Chen, Xianglong, et al.
Publicado: (2016)