Cargando…

Quantum Image Encryption Scheme Using Arnold Transform and S-box Scrambling

The paper proposes a lossless quantum image encryption scheme based on substitution tables (S-box) scrambling, mutation operation and general Arnold transform with keys. First, the key generator builds upon the foundation of SHA-256 hash with plain-image and a random sequence. Its output value is us...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Hui, Zhao, Bo, Huang, Linquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514826/
https://www.ncbi.nlm.nih.gov/pubmed/33267057
http://dx.doi.org/10.3390/e21040343
Descripción
Sumario:The paper proposes a lossless quantum image encryption scheme based on substitution tables (S-box) scrambling, mutation operation and general Arnold transform with keys. First, the key generator builds upon the foundation of SHA-256 hash with plain-image and a random sequence. Its output value is used to yield initial conditions and parameters of the proposed image encryption scheme. Second, the permutation and gray-level encryption architecture is built by discrete Arnold map and quantum chaotic map. Before the permutation of Arnold transform, the pixel value is modified by quantum chaos sequence. In order to get high scrambling and randomness, S-box and mutation operation are exploited in gray-level encryption stage. The combination of linear transformation and nonlinear transformation ensures the complexity of the proposed scheme and avoids harmful periodicity. The simulation shows the cipher-image has a fairly uniform histogram, low correlation coefficients closed to 0, high information entropy closed to 8. The proposed cryptosystem provides 2(256) key space and performs fast computational efficiency (speed = 11.920875 Mbit/s). Theoretical analyses and experimental results prove that the proposed scheme has strong resistance to various existing attacks and high level of security.