Cargando…
An Integrated Approach Based on Swarm Decomposition, Morphology Envelope Dispersion Entropy, and Random Forest for Multi-Fault Recognition of Rolling Bearing
Aiming at the problem that the weak faults of rolling bearing are difficult to recognize accurately, an approach on the basis of swarm decomposition (SWD), morphology envelope dispersion entropy (MEDE), and random forest (RF) is proposed to realize effective detection and intelligent recognition of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514838/ https://www.ncbi.nlm.nih.gov/pubmed/33267068 http://dx.doi.org/10.3390/e21040354 |
_version_ | 1783586681036734464 |
---|---|
author | Wan, Shuting Peng, Bo |
author_facet | Wan, Shuting Peng, Bo |
author_sort | Wan, Shuting |
collection | PubMed |
description | Aiming at the problem that the weak faults of rolling bearing are difficult to recognize accurately, an approach on the basis of swarm decomposition (SWD), morphology envelope dispersion entropy (MEDE), and random forest (RF) is proposed to realize effective detection and intelligent recognition of weak faults in rolling bearings. The proposed approach is based on the idea of signal denoising, feature extraction and pattern classification. Firstly, the raw signal is divided into a group of oscillatory components through SWD algorithm. The first component has the richest fault information and perceived as the principal oscillatory component (POC). Secondly, the MEDE value of the POC is calculated and used to describe the characteristics of signal. Ultimately, the obtained MEDE values of various states are trained and recognized by being input as the feature vectors into the RF classifier to achieve the automatic identification of rolling bearing fault under different operation states. The dataset of Case Western Reserve University is conducted, the proposed approach achieves recognition accuracy rate of 100%. In summary, the proposed approach is efficient and robust, which can be used as a supplement to the rolling bearing fault diagnosis methods. |
format | Online Article Text |
id | pubmed-7514838 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75148382020-11-09 An Integrated Approach Based on Swarm Decomposition, Morphology Envelope Dispersion Entropy, and Random Forest for Multi-Fault Recognition of Rolling Bearing Wan, Shuting Peng, Bo Entropy (Basel) Article Aiming at the problem that the weak faults of rolling bearing are difficult to recognize accurately, an approach on the basis of swarm decomposition (SWD), morphology envelope dispersion entropy (MEDE), and random forest (RF) is proposed to realize effective detection and intelligent recognition of weak faults in rolling bearings. The proposed approach is based on the idea of signal denoising, feature extraction and pattern classification. Firstly, the raw signal is divided into a group of oscillatory components through SWD algorithm. The first component has the richest fault information and perceived as the principal oscillatory component (POC). Secondly, the MEDE value of the POC is calculated and used to describe the characteristics of signal. Ultimately, the obtained MEDE values of various states are trained and recognized by being input as the feature vectors into the RF classifier to achieve the automatic identification of rolling bearing fault under different operation states. The dataset of Case Western Reserve University is conducted, the proposed approach achieves recognition accuracy rate of 100%. In summary, the proposed approach is efficient and robust, which can be used as a supplement to the rolling bearing fault diagnosis methods. MDPI 2019-04-01 /pmc/articles/PMC7514838/ /pubmed/33267068 http://dx.doi.org/10.3390/e21040354 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wan, Shuting Peng, Bo An Integrated Approach Based on Swarm Decomposition, Morphology Envelope Dispersion Entropy, and Random Forest for Multi-Fault Recognition of Rolling Bearing |
title | An Integrated Approach Based on Swarm Decomposition, Morphology Envelope Dispersion Entropy, and Random Forest for Multi-Fault Recognition of Rolling Bearing |
title_full | An Integrated Approach Based on Swarm Decomposition, Morphology Envelope Dispersion Entropy, and Random Forest for Multi-Fault Recognition of Rolling Bearing |
title_fullStr | An Integrated Approach Based on Swarm Decomposition, Morphology Envelope Dispersion Entropy, and Random Forest for Multi-Fault Recognition of Rolling Bearing |
title_full_unstemmed | An Integrated Approach Based on Swarm Decomposition, Morphology Envelope Dispersion Entropy, and Random Forest for Multi-Fault Recognition of Rolling Bearing |
title_short | An Integrated Approach Based on Swarm Decomposition, Morphology Envelope Dispersion Entropy, and Random Forest for Multi-Fault Recognition of Rolling Bearing |
title_sort | integrated approach based on swarm decomposition, morphology envelope dispersion entropy, and random forest for multi-fault recognition of rolling bearing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514838/ https://www.ncbi.nlm.nih.gov/pubmed/33267068 http://dx.doi.org/10.3390/e21040354 |
work_keys_str_mv | AT wanshuting anintegratedapproachbasedonswarmdecompositionmorphologyenvelopedispersionentropyandrandomforestformultifaultrecognitionofrollingbearing AT pengbo anintegratedapproachbasedonswarmdecompositionmorphologyenvelopedispersionentropyandrandomforestformultifaultrecognitionofrollingbearing AT wanshuting integratedapproachbasedonswarmdecompositionmorphologyenvelopedispersionentropyandrandomforestformultifaultrecognitionofrollingbearing AT pengbo integratedapproachbasedonswarmdecompositionmorphologyenvelopedispersionentropyandrandomforestformultifaultrecognitionofrollingbearing |