Cargando…
First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning
Analysis of histopathological image supposes the most reliable procedure to identify prostate cancer. Most studies try to develop computer aid-systems to face the Gleason grading problem. On the contrary, we delve into the discrimination between healthy and cancerous tissues in its earliest stage, o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514840/ https://www.ncbi.nlm.nih.gov/pubmed/33267070 http://dx.doi.org/10.3390/e21040356 |
_version_ | 1783586681509642240 |
---|---|
author | García, Gabriel Colomer, Adrián Naranjo, Valery |
author_facet | García, Gabriel Colomer, Adrián Naranjo, Valery |
author_sort | García, Gabriel |
collection | PubMed |
description | Analysis of histopathological image supposes the most reliable procedure to identify prostate cancer. Most studies try to develop computer aid-systems to face the Gleason grading problem. On the contrary, we delve into the discrimination between healthy and cancerous tissues in its earliest stage, only focusing on the information contained in the automatically segmented gland candidates. We propose a hand-driven learning approach, in which we perform an exhaustive hand-crafted feature extraction stage combining in a novel way descriptors of morphology, texture, fractals and contextual information of the candidates under study. Then, we carry out an in-depth statistical analysis to select the most relevant features that constitute the inputs to the optimised machine-learning classifiers. Additionally, we apply for the first time on prostate segmented glands, deep-learning algorithms modifying the popular VGG19 neural network. We fine-tuned the last convolutional block of the architecture to provide the model specific knowledge about the gland images. The hand-driven learning approach, using a nonlinear Support Vector Machine, reports a slight outperforming over the rest of experiments with a final multi-class accuracy of [Formula: see text] in the discrimination between false glands (artefacts), benign glands and Gleason grade 3 glands. |
format | Online Article Text |
id | pubmed-7514840 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75148402020-11-09 First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning García, Gabriel Colomer, Adrián Naranjo, Valery Entropy (Basel) Article Analysis of histopathological image supposes the most reliable procedure to identify prostate cancer. Most studies try to develop computer aid-systems to face the Gleason grading problem. On the contrary, we delve into the discrimination between healthy and cancerous tissues in its earliest stage, only focusing on the information contained in the automatically segmented gland candidates. We propose a hand-driven learning approach, in which we perform an exhaustive hand-crafted feature extraction stage combining in a novel way descriptors of morphology, texture, fractals and contextual information of the candidates under study. Then, we carry out an in-depth statistical analysis to select the most relevant features that constitute the inputs to the optimised machine-learning classifiers. Additionally, we apply for the first time on prostate segmented glands, deep-learning algorithms modifying the popular VGG19 neural network. We fine-tuned the last convolutional block of the architecture to provide the model specific knowledge about the gland images. The hand-driven learning approach, using a nonlinear Support Vector Machine, reports a slight outperforming over the rest of experiments with a final multi-class accuracy of [Formula: see text] in the discrimination between false glands (artefacts), benign glands and Gleason grade 3 glands. MDPI 2019-04-02 /pmc/articles/PMC7514840/ /pubmed/33267070 http://dx.doi.org/10.3390/e21040356 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article García, Gabriel Colomer, Adrián Naranjo, Valery First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning |
title | First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning |
title_full | First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning |
title_fullStr | First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning |
title_full_unstemmed | First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning |
title_short | First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning |
title_sort | first-stage prostate cancer identification on histopathological images: hand-driven versus automatic learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514840/ https://www.ncbi.nlm.nih.gov/pubmed/33267070 http://dx.doi.org/10.3390/e21040356 |
work_keys_str_mv | AT garciagabriel firststageprostatecanceridentificationonhistopathologicalimageshanddrivenversusautomaticlearning AT colomeradrian firststageprostatecanceridentificationonhistopathologicalimageshanddrivenversusautomaticlearning AT naranjovalery firststageprostatecanceridentificationonhistopathologicalimageshanddrivenversusautomaticlearning |