Cargando…
First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning
Analysis of histopathological image supposes the most reliable procedure to identify prostate cancer. Most studies try to develop computer aid-systems to face the Gleason grading problem. On the contrary, we delve into the discrimination between healthy and cancerous tissues in its earliest stage, o...
Autores principales: | García, Gabriel, Colomer, Adrián, Naranjo, Valery |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514840/ https://www.ncbi.nlm.nih.gov/pubmed/33267070 http://dx.doi.org/10.3390/e21040356 |
Ejemplares similares
-
Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture
por: Noorda, Reinier, et al.
Publicado: (2020) -
Label Distribution Learning for Automatic Cancer Grading of Histopathological Images of Prostate Cancer
por: Nishio, Mizuho, et al.
Publicado: (2023) -
A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents
por: Colomer Granero, Adrián, et al.
Publicado: (2016) -
Automatic Segmentation of Epidermis and Hair Follicles in Optical Coherence Tomography Images of Normal Skin by Convolutional Neural Networks
por: del Amor, Rocío, et al.
Publicado: (2020) -
Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images
por: Colomer, Adrián, et al.
Publicado: (2020)