Cargando…

A Mesoscopic Traffic Data Assimilation Framework for Vehicle Density Estimation on Urban Traffic Networks Based on Particle Filters

Traffic conditions can be more accurately estimated using data assimilation techniques since these methods incorporate an imperfect traffic simulation model with the (partial) noisy measurement data. In this paper, we propose a data assimilation framework for vehicle density estimation on urban traf...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Song, Xie, Xu, Ju, Rusheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514842/
https://www.ncbi.nlm.nih.gov/pubmed/33267072
http://dx.doi.org/10.3390/e21040358
Descripción
Sumario:Traffic conditions can be more accurately estimated using data assimilation techniques since these methods incorporate an imperfect traffic simulation model with the (partial) noisy measurement data. In this paper, we propose a data assimilation framework for vehicle density estimation on urban traffic networks. To compromise between computational efficiency and estimation accuracy, a mesoscopic traffic simulation model (we choose the platoon based model) is employed in this framework. Vehicle passages from loop detectors are considered as the measurement data which contain errors, such as missed and false detections. Due to the nonlinear and non-Gaussian nature of the problem, particle filters are adopted to carry out the state estimation, since this method does not have any restrictions on the model dynamics and error assumptions. Simulation experiments are carried out to test the proposed data assimilation framework, and the results show that the proposed framework can provide good vehicle density estimation on relatively large urban traffic networks under moderate sensor quality. The sensitivity analysis proves that the proposed framework is robust to errors both in the model and in the measurements.