Cargando…
Between Nonlinearities, Complexity, and Noises: An Application on Portfolio Selection Using Kernel Principal Component Analysis
This paper discusses the effects of introducing nonlinear interactions and noise-filtering to the covariance matrix used in Markowitz’s portfolio allocation model, evaluating the technique’s performances for daily data from seven financial markets between January 2000 and August 2018. We estimated t...
Autores principales: | Peng, Yaohao, Albuquerque, Pedro Henrique Melo, do Nascimento, Igor Ferreira, Machado, João Victor Freitas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514861/ https://www.ncbi.nlm.nih.gov/pubmed/33267090 http://dx.doi.org/10.3390/e21040376 |
Ejemplares similares
-
Gene Expression Data Classification With Kernel
Principal Component Analysis
por: Liu, Zhenqiu, et al.
Publicado: (2005) -
Kernel Principal Component Analysis of Coil Compression in Parallel Imaging
por: Chang, Yuchou, et al.
Publicado: (2018) -
Nonlinear principal component analysis and its applications
por: Mori, Yuichi, et al.
Publicado: (2016) -
Gene- or region-based association study via kernel principal component analysis
por: Gao, Qingsong, et al.
Publicado: (2011) -
Towards Multiple Kernel Principal Component Analysis for Integrative Analysis of Tumor Samples
por: Speicher, Nora K., et al.
Publicado: (2017)