Cargando…
Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications
Permutation Entropy (PE) is a time series complexity measure commonly used in a variety of contexts, with medicine being the prime example. In its general form, it requires three input parameters for its calculation: time series length N, embedded dimension m, and embedded delay [Formula: see text]....
Autores principales: | Cuesta-Frau, David, Murillo-Escobar, Juan Pablo, Orrego, Diana Alexandra, Delgado-Trejos, Edilson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514869/ https://www.ncbi.nlm.nih.gov/pubmed/33267099 http://dx.doi.org/10.3390/e21040385 |
Ejemplares similares
-
Using the Information Provided by Forbidden Ordinal Patterns in Permutation Entropy to Reinforce Time Series Discrimination Capabilities
por: Cuesta-Frau, David
Publicado: (2020) -
Permutation Entropy Based on Non-Uniform Embedding
por: Tao, Mei, et al.
Publicado: (2018) -
Permutation Entropy: Enhancing Discriminating Power by Using Relative Frequencies Vector of Ordinal Patterns Instead of Their Shannon Entropy
por: Cuesta-Frau, David, et al.
Publicado: (2019) -
Application of Permutation Entropy and Permutation Min-Entropy in Multiple Emotional States Analysis of RRI Time Series
por: Xia, Yirong, et al.
Publicado: (2018) -
On Rényi Permutation Entropy
por: Gutjahr, Tim, et al.
Publicado: (2021)