Cargando…
On the Use of Entropy to Improve Model Selection Criteria
The most widely used forms of model selection criteria, the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC), are expressed in terms of synthetic indicators of the residual distribution: the variance and the mean-squared error of the residuals respectively. In many app...
Autores principales: | Murari, Andrea, Peluso, Emmanuele, Cianfrani, Francesco, Gaudio, Pasquale, Lungaroni, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514877/ https://www.ncbi.nlm.nih.gov/pubmed/33267107 http://dx.doi.org/10.3390/e21040394 |
Ejemplares similares
-
On the Use of Transfer Entropy to Investigate the Time Horizon of Causal Influences between Signals
por: Murari, Andrea, et al.
Publicado: (2018) -
A Model Falsification Approach to Learning in Non-Stationary Environments for Experimental Design
por: Murari, Andrea, et al.
Publicado: (2019) -
Quantifying Total Influence between Variables with Information Theoretic and Machine Learning Techniques
por: Murari, Andrea, et al.
Publicado: (2020) -
Upgrading Model Selection Criteria with Goodness of Fit Tests for Practical Applications
por: Rossi, Riccardo, et al.
Publicado: (2020) -
Data driven theory for knowledge discovery in the exact sciences with applications to thermonuclear fusion
por: Murari, A., et al.
Publicado: (2020)