Cargando…
Entropy Rate Superpixel Classification for Automatic Red Lesion Detection in Fundus Images
Diabetic retinopathy (DR) is the main cause of blindness in the working-age population in developed countries. Digital color fundus images can be analyzed to detect lesions for large-scale screening. Thereby, automated systems can be helpful in the diagnosis of this disease. The aim of this study wa...
Autores principales: | Romero-Oraá, Roberto, Jiménez-García, Jorge, García, María, López-Gálvez, María I., Oraá-Pérez, Javier, Hornero, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514906/ https://www.ncbi.nlm.nih.gov/pubmed/33267131 http://dx.doi.org/10.3390/e21040417 |
Ejemplares similares
-
Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy
por: Romero-Oraá, Roberto, et al.
Publicado: (2020) -
Combination of Global Features for the Automatic Quality Assessment of Retinal Images
por: Jiménez-García, Jorge, et al.
Publicado: (2019) -
Automated Detection of Red Lesions Using Superpixel Multichannel Multifeature
por: Zhou, Wei, et al.
Publicado: (2017) -
Automatic Graph Cut Segmentation of Lesions in CT Using Mean Shift Superpixels
por: Ye, Xujiong, et al.
Publicado: (2010) -
Automatic glioma segmentation based on adaptive superpixel
por: Wu, Yaping, et al.
Publicado: (2019)