Cargando…
Optimizing Deep CNN Architectures for Face Liveness Detection
Face recognition is a popular and efficient form of biometric authentication used in many software applications. One drawback of this technique is that it is prone to face spoofing attacks, where an impostor can gain access to the system by presenting a photograph of a valid user to the sensor. Thus...
Autores principales: | Koshy, Ranjana, Mahmood, Ausif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514912/ https://www.ncbi.nlm.nih.gov/pubmed/33267137 http://dx.doi.org/10.3390/e21040423 |
Ejemplares similares
-
Enhanced Deep Learning Architectures for Face Liveness Detection for Static and Video Sequences
por: Koshy, Ranjana, et al.
Publicado: (2020) -
Optimizing Few-Shot Learning Based on Variational Autoencoders
por: Wei, Ruoqi, et al.
Publicado: (2021) -
Deep Multi-Branch CNN Architecture for Early Alzheimer’s Detection from Brain MRIs
por: Mandal, Paul K., et al.
Publicado: (2023) -
Blind-Spot Collision Detection System for Commercial Vehicles Using Multi Deep CNN Architecture
por: Muzammel, Muhammad, et al.
Publicado: (2022) -
High-dimensional normalized data profiles for testing derivative-free optimization algorithms
por: Musafer, Hassan, et al.
Publicado: (2022)