Cargando…

Soft Randomized Machine Learning Procedure for Modeling Dynamic Interaction of Regional Systems

The paper suggests a randomized model for dynamic migratory interaction of regional systems. The locally stationary states of migration flows in the basic and immigration systems are described by corresponding entropy operators. A soft randomization procedure that defines the optimal probability den...

Descripción completa

Detalles Bibliográficos
Autor principal: Popkov, Yuri S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514913/
https://www.ncbi.nlm.nih.gov/pubmed/33267138
http://dx.doi.org/10.3390/e21040424
Descripción
Sumario:The paper suggests a randomized model for dynamic migratory interaction of regional systems. The locally stationary states of migration flows in the basic and immigration systems are described by corresponding entropy operators. A soft randomization procedure that defines the optimal probability density functions of system parameters and measurement noises is developed. The advantages of soft randomization with approximate empirical data balance conditions are demonstrated, which considerably reduces algorithmic complexity and computational resources demand. An example of migratory interaction modeling and testing is given.