Cargando…
Examining the Limits of Predictability of Human Mobility
We challenge the upper bound of human-mobility predictability that is widely used to corroborate the accuracy of mobility prediction models. We observe that extensions of recurrent-neural network architectures achieve significantly higher prediction accuracy, surpassing this upper bound. Given this...
Autores principales: | Kulkarni, Vaibhav, Mahalunkar, Abhijit, Garbinato, Benoit, Kelleher, John D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514921/ https://www.ncbi.nlm.nih.gov/pubmed/33267146 http://dx.doi.org/10.3390/e21040432 |
Ejemplares similares
-
Networked systems: 5th international conference, NETYS 2017, Marrakech, Morocco, May 17-19, 2017, proceedings
por: El Abbadi, Amr, et al.
Publicado: (2017) -
Approaching the Limit of Predictability in Human Mobility
por: Lu, Xin, et al.
Publicado: (2013) -
Limitation of Examinations
Publicado: (1874) -
Prediction limits of mobile phone activity modelling
por: Kondor, Dániel, et al.
Publicado: (2017) -
Strategies and limitations in app usage and human mobility
por: De Nadai, Marco, et al.
Publicado: (2019)