Cargando…
Canonical Divergence for Measuring Classical and Quantum Complexity
A new canonical divergence is put forward for generalizing an information-geometric measure of complexity for both classical and quantum systems. On the simplex of probability measures, it is proved that the new divergence coincides with the Kullback–Leibler divergence, which is used to quantify how...
Autores principales: | Felice, Domenico, Mancini, Stefano, Ay, Nihat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514924/ https://www.ncbi.nlm.nih.gov/pubmed/33267149 http://dx.doi.org/10.3390/e21040435 |
Ejemplares similares
-
Canonical Divergence for Flat α-Connections: Classical and Quantum
por: Felice, Domenico, et al.
Publicado: (2019) -
Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences
por: Bussandri, Diego G., et al.
Publicado: (2023) -
Error Probability Mitigation in Quantum Reading Using Classical Codes
por: Fernandes Pereira, Francisco Revson, et al.
Publicado: (2021) -
Conservation and divergence of canonical and non-canonical imprinting in murids
por: Richard Albert, Julien, et al.
Publicado: (2023) -
117th WE-Heraeus-Seminar : the Canonical Formalism in Classical and Quantum General Relativity
por: Ehlers, J, et al.
Publicado: (1994)