Cargando…
A Novel Signal Separation Method Based on Improved Sparse Non-Negative Matrix Factorization
In order to separate and extract compound fault features of a vibration signal from a single channel, a novel signal separation method is proposed based on improved sparse non-negative matrix factorization (SNMF). In view of the traditional SNMF failure to perform well in the underdetermined blind s...
Autores principales: | Wang, Huaqing, Wang, Mengyang, Li, Junlin, Song, Liuyang, Hao, Yansong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514934/ https://www.ncbi.nlm.nih.gov/pubmed/33267159 http://dx.doi.org/10.3390/e21050445 |
Ejemplares similares
-
Diagnosis of Compound Fault Using Sparsity Promoted-Based Sparse Component Analysis
por: Hao, Yansong, et al.
Publicado: (2017) -
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement
por: Ren, Bangyue, et al.
Publicado: (2018) -
Co-sparse Non-negative Matrix Factorization
por: Wu, Fan, et al.
Publicado: (2022) -
Clutter Mitigation in Echocardiography Using Sparse Signal Separation
por: Turek, Javier S., et al.
Publicado: (2015) -
Non-Negative Matrix Factorization Based on Smoothing and Sparse Constraints for Hyperspectral Unmixing
por: Jia, Xiangxiang, et al.
Publicado: (2022)