Cargando…
Symmetry and Shannon Measure of Ordering: Paradoxes of Voronoi Tessellation
The Voronoi entropy for random patterns and patterns demonstrating various elements of symmetry was calculated. The symmetric patterns were characterized by the values of the Voronoi entropy being very close to those inherent to random ones. This contradicts the idea that the Voronoi entropy quantif...
Autores principales: | Bormashenko, Edward, Legchenkova, Irina, Frenkel, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514941/ https://www.ncbi.nlm.nih.gov/pubmed/33267166 http://dx.doi.org/10.3390/e21050452 |
Ejemplares similares
-
Voronoi Tessellations and the Shannon Entropy of the Pentagonal Tilings
por: Bormashenko, Edward, et al.
Publicado: (2023) -
Is the Voronoi Entropy a True Entropy? Comments on “Entropy, Shannon’s Measure of Information and Boltzmann’s H-Theorem”, Entropy 2017, 19, 48
por: Bormashenko, Edward, et al.
Publicado: (2019) -
From Chaos to Ordering: New Studies in the Shannon Entropy of 2D Patterns
por: Legchenkova, Irina, et al.
Publicado: (2022) -
Characterization of Self-Assembled 2D Patterns with Voronoi Entropy
por: Bormashenko, Edward, et al.
Publicado: (2018) -
Lectures on random Voronoi tessellations
por: Møller, Jesper
Publicado: (1994)