Cargando…
A Neutrosophic Forecasting Model for Time Series Based on First-Order State and Information Entropy of High-Order Fluctuation
In time series forecasting, information presentation directly affects prediction efficiency. Most existing time series forecasting models follow logical rules according to the relationships between neighboring states, without considering the inconsistency of fluctuations for a related period. In thi...
Autores principales: | Guan, Hongjun, Dai, Zongli, Guan, Shuang, Zhao, Aiwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514944/ https://www.ncbi.nlm.nih.gov/pubmed/33267169 http://dx.doi.org/10.3390/e21050455 |
Ejemplares similares
-
A Forecasting Model Based on High-Order Fluctuation Trends and Information Entropy
por: Guan, Hongjun, et al.
Publicado: (2018) -
A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network
por: Guan, Hongjun, et al.
Publicado: (2018) -
Second-order neutrosophic boundary-value problem
por: Moi, Sandip, et al.
Publicado: (2021) -
Entropy, Information, and Symmetry: Ordered is Symmetrical
por: Bormashenko, Edward
Publicado: (2019) -
Generalized Distance-Based Entropy and Dimension Root Entropy for Simplified Neutrosophic Sets
por: Cui, Wen-Hua, et al.
Publicado: (2018)