Cargando…
What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks
Actual causation is concerned with the question: “What caused what?” Consider a transition between two states within a system of interacting elements, such as an artificial neural network, or a biological brain circuit. Which combination of synapses caused the neuron to fire? Which image features ca...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514949/ https://www.ncbi.nlm.nih.gov/pubmed/33267173 http://dx.doi.org/10.3390/e21050459 |
_version_ | 1783586705730699264 |
---|---|
author | Albantakis, Larissa Marshall, William Hoel, Erik Tononi, Giulio |
author_facet | Albantakis, Larissa Marshall, William Hoel, Erik Tononi, Giulio |
author_sort | Albantakis, Larissa |
collection | PubMed |
description | Actual causation is concerned with the question: “What caused what?” Consider a transition between two states within a system of interacting elements, such as an artificial neural network, or a biological brain circuit. Which combination of synapses caused the neuron to fire? Which image features caused the classifier to misinterpret the picture? Even detailed knowledge of the system’s causal network, its elements, their states, connectivity, and dynamics does not automatically provide a straightforward answer to the “what caused what?” question. Counterfactual accounts of actual causation, based on graphical models paired with system interventions, have demonstrated initial success in addressing specific problem cases, in line with intuitive causal judgments. Here, we start from a set of basic requirements for causation (realization, composition, information, integration, and exclusion) and develop a rigorous, quantitative account of actual causation, that is generally applicable to discrete dynamical systems. We present a formal framework to evaluate these causal requirements based on system interventions and partitions, which considers all counterfactuals of a state transition. This framework is used to provide a complete causal account of the transition by identifying and quantifying the strength of all actual causes and effects linking the two consecutive system states. Finally, we examine several exemplary cases and paradoxes of causation and show that they can be illuminated by the proposed framework for quantifying actual causation. |
format | Online Article Text |
id | pubmed-7514949 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75149492020-11-09 What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks Albantakis, Larissa Marshall, William Hoel, Erik Tononi, Giulio Entropy (Basel) Article Actual causation is concerned with the question: “What caused what?” Consider a transition between two states within a system of interacting elements, such as an artificial neural network, or a biological brain circuit. Which combination of synapses caused the neuron to fire? Which image features caused the classifier to misinterpret the picture? Even detailed knowledge of the system’s causal network, its elements, their states, connectivity, and dynamics does not automatically provide a straightforward answer to the “what caused what?” question. Counterfactual accounts of actual causation, based on graphical models paired with system interventions, have demonstrated initial success in addressing specific problem cases, in line with intuitive causal judgments. Here, we start from a set of basic requirements for causation (realization, composition, information, integration, and exclusion) and develop a rigorous, quantitative account of actual causation, that is generally applicable to discrete dynamical systems. We present a formal framework to evaluate these causal requirements based on system interventions and partitions, which considers all counterfactuals of a state transition. This framework is used to provide a complete causal account of the transition by identifying and quantifying the strength of all actual causes and effects linking the two consecutive system states. Finally, we examine several exemplary cases and paradoxes of causation and show that they can be illuminated by the proposed framework for quantifying actual causation. MDPI 2019-05-02 /pmc/articles/PMC7514949/ /pubmed/33267173 http://dx.doi.org/10.3390/e21050459 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Albantakis, Larissa Marshall, William Hoel, Erik Tononi, Giulio What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks |
title | What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks |
title_full | What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks |
title_fullStr | What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks |
title_full_unstemmed | What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks |
title_short | What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks |
title_sort | what caused what? a quantitative account of actual causation using dynamical causal networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514949/ https://www.ncbi.nlm.nih.gov/pubmed/33267173 http://dx.doi.org/10.3390/e21050459 |
work_keys_str_mv | AT albantakislarissa whatcausedwhataquantitativeaccountofactualcausationusingdynamicalcausalnetworks AT marshallwilliam whatcausedwhataquantitativeaccountofactualcausationusingdynamicalcausalnetworks AT hoelerik whatcausedwhataquantitativeaccountofactualcausationusingdynamicalcausalnetworks AT tononigiulio whatcausedwhataquantitativeaccountofactualcausationusingdynamicalcausalnetworks |