Cargando…
Mechanical Fault Diagnosis of a DC Motor Utilizing United Variational Mode Decomposition, SampEn, and Random Forest-SPRINT Algorithm Classifiers
Traditional fault diagnosis methods of DC (direct current) motors require establishing accurate mathematical models, effective state and parameter estimations, and appropriate statistical decision-making methods. However, these preconditions considerably limit traditional motor fault diagnosis metho...
Autores principales: | Guo, Zijian, Liu, Mingliang, Qin, Huabin, Li, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514959/ https://www.ncbi.nlm.nih.gov/pubmed/33267184 http://dx.doi.org/10.3390/e21050470 |
Ejemplares similares
-
New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption
por: Tomčala, Jiří
Publicado: (2020) -
Effects of Tau and Sampling Frequency on the Regularity Analysis of ECG and EEG Signals Using ApEn and SampEn Entropy Estimators
por: Espinosa, Ricardo, et al.
Publicado: (2020) -
Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors
por: Camarena-Martinez, David, et al.
Publicado: (2014) -
Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier
por: Huang, Nantian, et al.
Publicado: (2016) -
Bearing Fault Diagnosis of Induction Motors Using a Genetic Algorithm and Machine Learning Classifiers
por: Toma, Rafia Nishat, et al.
Publicado: (2020)