Cargando…
3D CNN-Based Speech Emotion Recognition Using K-Means Clustering and Spectrograms
Detecting human intentions and emotions helps improve human–robot interactions. Emotion recognition has been a challenging research direction in the past decade. This paper proposes an emotion recognition system based on analysis of speech signals. Firstly, we split each speech signal into overlappi...
Autores principales: | Hajarolasvadi, Noushin, Demirel, Hasan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514968/ https://www.ncbi.nlm.nih.gov/pubmed/33267193 http://dx.doi.org/10.3390/e21050479 |
Ejemplares similares
-
Multi-Input Speech Emotion Recognition Model Using Mel Spectrogram and GeMAPS
por: Toyoshima, Itsuki, et al.
Publicado: (2023) -
CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis
por: Khan, Md. Sakib, et al.
Publicado: (2022) -
A CNN-Assisted Enhanced Audio Signal Processing for Speech Emotion Recognition
por: Mustaqeem,, et al.
Publicado: (2019) -
Silent Speech Decoding Using Spectrogram Features Based on Neuromuscular Activities
por: Wang, You, et al.
Publicado: (2020) -
NISQE: Non-Intrusive Speech Quality Evaluator Based on Natural Statistics of Mean Subtracted Contrast Normalized Coefficients of Spectrogram
por: Zafar, Shakeel, et al.
Publicado: (2023)