Cargando…
Quantum Probes for Ohmic Environments at Thermal Equilibrium
It is often the case that the environment of a quantum system may be described as a bath of oscillators with an ohmic density of states. In turn, the precise characterization of these classes of environments is a crucial tool to engineer decoherence or to tailor quantum information protocols. Recent...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514975/ https://www.ncbi.nlm.nih.gov/pubmed/33267200 http://dx.doi.org/10.3390/e21050486 |
_version_ | 1783586711775739904 |
---|---|
author | Salari Sehdaran, Fahimeh Bina, Matteo Benedetti, Claudia Paris, Matteo G. A. |
author_facet | Salari Sehdaran, Fahimeh Bina, Matteo Benedetti, Claudia Paris, Matteo G. A. |
author_sort | Salari Sehdaran, Fahimeh |
collection | PubMed |
description | It is often the case that the environment of a quantum system may be described as a bath of oscillators with an ohmic density of states. In turn, the precise characterization of these classes of environments is a crucial tool to engineer decoherence or to tailor quantum information protocols. Recently, the use of quantum probes in characterizing ohmic environments at zero-temperature has been discussed, showing that a single qubit provides precise estimation of the cutoff frequency. On the other hand, thermal noise often spoil quantum probing schemes, and for this reason we here extend the analysis to a complex system at thermal equilibrium. In particular, we discuss the interplay between thermal fluctuations and time evolution in determining the precision attainable by quantum probes. Our results show that the presence of thermal fluctuations degrades the precision for low values of the cutoff frequency, i.e., values of the order [Formula: see text] (in natural units). For larger values of [Formula: see text] , decoherence is mostly due to the structure of environment, rather than thermal fluctuations, such that quantum probing by a single qubit is still an effective estimation procedure. |
format | Online Article Text |
id | pubmed-7514975 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75149752020-11-09 Quantum Probes for Ohmic Environments at Thermal Equilibrium Salari Sehdaran, Fahimeh Bina, Matteo Benedetti, Claudia Paris, Matteo G. A. Entropy (Basel) Article It is often the case that the environment of a quantum system may be described as a bath of oscillators with an ohmic density of states. In turn, the precise characterization of these classes of environments is a crucial tool to engineer decoherence or to tailor quantum information protocols. Recently, the use of quantum probes in characterizing ohmic environments at zero-temperature has been discussed, showing that a single qubit provides precise estimation of the cutoff frequency. On the other hand, thermal noise often spoil quantum probing schemes, and for this reason we here extend the analysis to a complex system at thermal equilibrium. In particular, we discuss the interplay between thermal fluctuations and time evolution in determining the precision attainable by quantum probes. Our results show that the presence of thermal fluctuations degrades the precision for low values of the cutoff frequency, i.e., values of the order [Formula: see text] (in natural units). For larger values of [Formula: see text] , decoherence is mostly due to the structure of environment, rather than thermal fluctuations, such that quantum probing by a single qubit is still an effective estimation procedure. MDPI 2019-05-12 /pmc/articles/PMC7514975/ /pubmed/33267200 http://dx.doi.org/10.3390/e21050486 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Salari Sehdaran, Fahimeh Bina, Matteo Benedetti, Claudia Paris, Matteo G. A. Quantum Probes for Ohmic Environments at Thermal Equilibrium |
title | Quantum Probes for Ohmic Environments at Thermal Equilibrium |
title_full | Quantum Probes for Ohmic Environments at Thermal Equilibrium |
title_fullStr | Quantum Probes for Ohmic Environments at Thermal Equilibrium |
title_full_unstemmed | Quantum Probes for Ohmic Environments at Thermal Equilibrium |
title_short | Quantum Probes for Ohmic Environments at Thermal Equilibrium |
title_sort | quantum probes for ohmic environments at thermal equilibrium |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514975/ https://www.ncbi.nlm.nih.gov/pubmed/33267200 http://dx.doi.org/10.3390/e21050486 |
work_keys_str_mv | AT salarisehdaranfahimeh quantumprobesforohmicenvironmentsatthermalequilibrium AT binamatteo quantumprobesforohmicenvironmentsatthermalequilibrium AT benedetticlaudia quantumprobesforohmicenvironmentsatthermalequilibrium AT parismatteoga quantumprobesforohmicenvironmentsatthermalequilibrium |