Cargando…
Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance
Over recent decades, the rapid growth in data makes ever more urgent the quest for highly scalable Bayesian networks that have better classification performance and expressivity (that is, capacity to respectively describe dependence relationships between attributes in different situations). To reduc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514978/ https://www.ncbi.nlm.nih.gov/pubmed/33267204 http://dx.doi.org/10.3390/e21050489 |
_version_ | 1783586712475140096 |
---|---|
author | Wang, Limin Liu, Yang Mammadov, Musa Sun, Minghui Qi, Sikai |
author_facet | Wang, Limin Liu, Yang Mammadov, Musa Sun, Minghui Qi, Sikai |
author_sort | Wang, Limin |
collection | PubMed |
description | Over recent decades, the rapid growth in data makes ever more urgent the quest for highly scalable Bayesian networks that have better classification performance and expressivity (that is, capacity to respectively describe dependence relationships between attributes in different situations). To reduce the search space of possible attribute orders, k-dependence Bayesian classifier (KDB) simply applies mutual information to sort attributes. This sorting strategy is very efficient but it neglects the conditional dependencies between attributes and is sub-optimal. In this paper, we propose a novel sorting strategy and extend KDB from a single restricted network to unrestricted ensemble networks, i.e., unrestricted Bayesian classifier (UKDB), in terms of Markov blanket analysis and target learning. Target learning is a framework that takes each unlabeled testing instance [Formula: see text] as a target and builds a specific Bayesian model Bayesian network classifiers (BNC) [Formula: see text] to complement BNC [Formula: see text] learned from training data [Formula: see text]. UKDB respectively introduced UKDB [Formula: see text] and UKDB [Formula: see text] to flexibly describe the change in dependence relationships for different testing instances and the robust dependence relationships implicated in training data. They both use UKDB as the base classifier by applying the same learning strategy while modeling different parts of the data space, thus they are complementary in nature. The extensive experimental results on the Wisconsin breast cancer database for case study and other 10 datasets by involving classifiers with different structure complexities, such as Naive Bayes (0-dependence), Tree augmented Naive Bayes (1-dependence) and KDB (arbitrary k-dependence), prove the effectiveness and robustness of the proposed approach. |
format | Online Article Text |
id | pubmed-7514978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75149782020-11-09 Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance Wang, Limin Liu, Yang Mammadov, Musa Sun, Minghui Qi, Sikai Entropy (Basel) Article Over recent decades, the rapid growth in data makes ever more urgent the quest for highly scalable Bayesian networks that have better classification performance and expressivity (that is, capacity to respectively describe dependence relationships between attributes in different situations). To reduce the search space of possible attribute orders, k-dependence Bayesian classifier (KDB) simply applies mutual information to sort attributes. This sorting strategy is very efficient but it neglects the conditional dependencies between attributes and is sub-optimal. In this paper, we propose a novel sorting strategy and extend KDB from a single restricted network to unrestricted ensemble networks, i.e., unrestricted Bayesian classifier (UKDB), in terms of Markov blanket analysis and target learning. Target learning is a framework that takes each unlabeled testing instance [Formula: see text] as a target and builds a specific Bayesian model Bayesian network classifiers (BNC) [Formula: see text] to complement BNC [Formula: see text] learned from training data [Formula: see text]. UKDB respectively introduced UKDB [Formula: see text] and UKDB [Formula: see text] to flexibly describe the change in dependence relationships for different testing instances and the robust dependence relationships implicated in training data. They both use UKDB as the base classifier by applying the same learning strategy while modeling different parts of the data space, thus they are complementary in nature. The extensive experimental results on the Wisconsin breast cancer database for case study and other 10 datasets by involving classifiers with different structure complexities, such as Naive Bayes (0-dependence), Tree augmented Naive Bayes (1-dependence) and KDB (arbitrary k-dependence), prove the effectiveness and robustness of the proposed approach. MDPI 2019-05-13 /pmc/articles/PMC7514978/ /pubmed/33267204 http://dx.doi.org/10.3390/e21050489 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Limin Liu, Yang Mammadov, Musa Sun, Minghui Qi, Sikai Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance |
title | Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance |
title_full | Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance |
title_fullStr | Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance |
title_full_unstemmed | Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance |
title_short | Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance |
title_sort | discriminative structure learning of bayesian network classifiers from training dataset and testing instance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514978/ https://www.ncbi.nlm.nih.gov/pubmed/33267204 http://dx.doi.org/10.3390/e21050489 |
work_keys_str_mv | AT wanglimin discriminativestructurelearningofbayesiannetworkclassifiersfromtrainingdatasetandtestinginstance AT liuyang discriminativestructurelearningofbayesiannetworkclassifiersfromtrainingdatasetandtestinginstance AT mammadovmusa discriminativestructurelearningofbayesiannetworkclassifiersfromtrainingdatasetandtestinginstance AT sunminghui discriminativestructurelearningofbayesiannetworkclassifiersfromtrainingdatasetandtestinginstance AT qisikai discriminativestructurelearningofbayesiannetworkclassifiersfromtrainingdatasetandtestinginstance |