Cargando…
Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance
Over recent decades, the rapid growth in data makes ever more urgent the quest for highly scalable Bayesian networks that have better classification performance and expressivity (that is, capacity to respectively describe dependence relationships between attributes in different situations). To reduc...
Autores principales: | Wang, Limin, Liu, Yang, Mammadov, Musa, Sun, Minghui, Qi, Sikai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514978/ https://www.ncbi.nlm.nih.gov/pubmed/33267204 http://dx.doi.org/10.3390/e21050489 |
Ejemplares similares
-
Efficient Heuristics for Structure Learning of k-Dependence Bayesian Classifier
por: Liu, Yang, et al.
Publicado: (2018) -
Training instance segmentation neural network with synthetic datasets for crop seed phenotyping
por: Toda, Yosuke, et al.
Publicado: (2020) -
Classifying and segmenting microscopy images with deep multiple instance learning
por: Kraus, Oren Z., et al.
Publicado: (2016) -
Structure Learning of Bayesian Network Based on Adaptive Thresholding
por: Zhang, Yang, et al.
Publicado: (2019) -
Stochastic margin-based structure learning of Bayesian network classifiers
por: Pernkopf, Franz, et al.
Publicado: (2013)