Cargando…

State and Parameter Estimation from Observed Signal Increments

The success of the ensemble Kalman filter has triggered a strong interest in expanding its scope beyond classical state estimation problems. In this paper, we focus on continuous-time data assimilation where the model and measurement errors are correlated and both states and parameters need to be id...

Descripción completa

Detalles Bibliográficos
Autores principales: Nüsken, Nikolas, Reich, Sebastian, Rozdeba, Paul J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514994/
https://www.ncbi.nlm.nih.gov/pubmed/33267219
http://dx.doi.org/10.3390/e21050505
_version_ 1783586716257353728
author Nüsken, Nikolas
Reich, Sebastian
Rozdeba, Paul J.
author_facet Nüsken, Nikolas
Reich, Sebastian
Rozdeba, Paul J.
author_sort Nüsken, Nikolas
collection PubMed
description The success of the ensemble Kalman filter has triggered a strong interest in expanding its scope beyond classical state estimation problems. In this paper, we focus on continuous-time data assimilation where the model and measurement errors are correlated and both states and parameters need to be identified. Such scenarios arise from noisy and partial observations of Lagrangian particles which move under a stochastic velocity field involving unknown parameters. We take an appropriate class of McKean–Vlasov equations as the starting point to derive ensemble Kalman–Bucy filter algorithms for combined state and parameter estimation. We demonstrate their performance through a series of increasingly complex multi-scale model systems.
format Online
Article
Text
id pubmed-7514994
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75149942020-11-09 State and Parameter Estimation from Observed Signal Increments Nüsken, Nikolas Reich, Sebastian Rozdeba, Paul J. Entropy (Basel) Article The success of the ensemble Kalman filter has triggered a strong interest in expanding its scope beyond classical state estimation problems. In this paper, we focus on continuous-time data assimilation where the model and measurement errors are correlated and both states and parameters need to be identified. Such scenarios arise from noisy and partial observations of Lagrangian particles which move under a stochastic velocity field involving unknown parameters. We take an appropriate class of McKean–Vlasov equations as the starting point to derive ensemble Kalman–Bucy filter algorithms for combined state and parameter estimation. We demonstrate their performance through a series of increasingly complex multi-scale model systems. MDPI 2019-05-17 /pmc/articles/PMC7514994/ /pubmed/33267219 http://dx.doi.org/10.3390/e21050505 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Nüsken, Nikolas
Reich, Sebastian
Rozdeba, Paul J.
State and Parameter Estimation from Observed Signal Increments
title State and Parameter Estimation from Observed Signal Increments
title_full State and Parameter Estimation from Observed Signal Increments
title_fullStr State and Parameter Estimation from Observed Signal Increments
title_full_unstemmed State and Parameter Estimation from Observed Signal Increments
title_short State and Parameter Estimation from Observed Signal Increments
title_sort state and parameter estimation from observed signal increments
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514994/
https://www.ncbi.nlm.nih.gov/pubmed/33267219
http://dx.doi.org/10.3390/e21050505
work_keys_str_mv AT nuskennikolas stateandparameterestimationfromobservedsignalincrements
AT reichsebastian stateandparameterestimationfromobservedsignalincrements
AT rozdebapaulj stateandparameterestimationfromobservedsignalincrements