Cargando…
Variational Characterizations of Local Entropy and Heat Regularization in Deep Learning
The aim of this paper is to provide new theoretical and computational understanding on two loss regularizations employed in deep learning, known as local entropy and heat regularization. For both regularized losses, we introduce variational characterizations that naturally suggest a two-step scheme...
Autores principales: | García Trillos, Nicolas, Kaplan, Zachary, Sanz-Alonso, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515000/ https://www.ncbi.nlm.nih.gov/pubmed/33267225 http://dx.doi.org/10.3390/e21050511 |
Ejemplares similares
-
An Entropy Metric for Regular Grammar Classification and Learning with Recurrent Neural Networks
por: Zhang, Kaixuan, et al.
Publicado: (2021) -
Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation
por: Xiang, Guofei, et al.
Publicado: (2023) -
What Drives Bitcoin? An Approach from Continuous Local Transfer Entropy and Deep Learning Classification Models
por: García-Medina, Andrés, et al.
Publicado: (2021) -
Entropy and Variability: A Second Opinion by Deep Learning
por: Rademaker, Daniel T., et al.
Publicado: (2022) -
Regular variation
por: Bingham, N H, et al.
Publicado: (1987)