Cargando…
Fault Diagnosis for Rolling Element Bearings Based on Feature Space Reconstruction and Multiscale Permutation Entropy
Aimed at distinguishing different fault categories of severity of rolling bearings, a novel method based on feature space reconstruction and multiscale permutation entropy is proposed in the study. Firstly, the ensemble empirical mode decomposition algorithm (EEMD) was employed to adaptively decompo...
Autores principales: | Zhang, Weibo, Zhou, Jianzhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515008/ https://www.ncbi.nlm.nih.gov/pubmed/33267235 http://dx.doi.org/10.3390/e21050519 |
Ejemplares similares
-
Use of Composite Multivariate Multiscale Permutation Fuzzy Entropy to Diagnose the Faults of Rolling Bearing
por: Yuan, Qiang, et al.
Publicado: (2023) -
Rolling Bearing Diagnosis Based on Composite Multiscale Weighted Permutation Entropy
por: Gan, Xiong, et al.
Publicado: (2018) -
Composite Multiscale Transition Permutation Entropy-Based Fault Diagnosis of Bearings
por: Guo, Jing, et al.
Publicado: (2022) -
Fault Diagnosis for Rail Vehicle Axle-Box Bearings Based on Energy Feature Reconstruction and Composite Multiscale Permutation Entropy
por: Wang, Xiaochao, et al.
Publicado: (2019) -
A Comprehensive Fault Diagnosis Method for Rolling Bearings Based on Refined Composite Multiscale Dispersion Entropy and Fast Ensemble Empirical Mode Decomposition
por: Zhang, Weibo, et al.
Publicado: (2019)