Cargando…
Nonlinear Stochastic Equation within an Itô Prescription for Modelling of Financial Market
The stochastic nonlinear model based on Itô diffusion is proposed as a mathematical model for price dynamics of financial markets. We study this model with relation to concrete stylised facts about financial markets. We investigate the behavior of the long tail distribution of the volatilities and v...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515019/ https://www.ncbi.nlm.nih.gov/pubmed/33267244 http://dx.doi.org/10.3390/e21050530 |
_version_ | 1783586722065416192 |
---|---|
author | S. Lima, Leonardo |
author_facet | S. Lima, Leonardo |
author_sort | S. Lima, Leonardo |
collection | PubMed |
description | The stochastic nonlinear model based on Itô diffusion is proposed as a mathematical model for price dynamics of financial markets. We study this model with relation to concrete stylised facts about financial markets. We investigate the behavior of the long tail distribution of the volatilities and verify the inverse power law behavior which is obeyed for some financial markets. Furthermore, we obtain the behavior of the long range memory and obtain that it follows to a distinct behavior of other stochastic models that are used as models for the finances. Furthermore, we have made an analysis by using Fokker–Planck equation independent on time with the aim of obtaining the cumulative probability distribution of volatilities [Formula: see text] , however, the probability density found does not exhibit the cubic inverse law. |
format | Online Article Text |
id | pubmed-7515019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75150192020-11-09 Nonlinear Stochastic Equation within an Itô Prescription for Modelling of Financial Market S. Lima, Leonardo Entropy (Basel) Article The stochastic nonlinear model based on Itô diffusion is proposed as a mathematical model for price dynamics of financial markets. We study this model with relation to concrete stylised facts about financial markets. We investigate the behavior of the long tail distribution of the volatilities and verify the inverse power law behavior which is obeyed for some financial markets. Furthermore, we obtain the behavior of the long range memory and obtain that it follows to a distinct behavior of other stochastic models that are used as models for the finances. Furthermore, we have made an analysis by using Fokker–Planck equation independent on time with the aim of obtaining the cumulative probability distribution of volatilities [Formula: see text] , however, the probability density found does not exhibit the cubic inverse law. MDPI 2019-05-25 /pmc/articles/PMC7515019/ /pubmed/33267244 http://dx.doi.org/10.3390/e21050530 Text en © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article S. Lima, Leonardo Nonlinear Stochastic Equation within an Itô Prescription for Modelling of Financial Market |
title | Nonlinear Stochastic Equation within an Itô Prescription for Modelling of Financial Market |
title_full | Nonlinear Stochastic Equation within an Itô Prescription for Modelling of Financial Market |
title_fullStr | Nonlinear Stochastic Equation within an Itô Prescription for Modelling of Financial Market |
title_full_unstemmed | Nonlinear Stochastic Equation within an Itô Prescription for Modelling of Financial Market |
title_short | Nonlinear Stochastic Equation within an Itô Prescription for Modelling of Financial Market |
title_sort | nonlinear stochastic equation within an itô prescription for modelling of financial market |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515019/ https://www.ncbi.nlm.nih.gov/pubmed/33267244 http://dx.doi.org/10.3390/e21050530 |
work_keys_str_mv | AT slimaleonardo nonlinearstochasticequationwithinanitoprescriptionformodellingoffinancialmarket |