Cargando…
Discriminatory Target Learning: Mining Significant Dependence Relationships from Labeled and Unlabeled Data
Machine learning techniques have shown superior predictive power, among which Bayesian network classifiers (BNCs) have remained of great interest due to its capacity to demonstrate complex dependence relationships. Most traditional BNCs tend to build only one model to fit training instances by analy...
Autores principales: | Duan, Zhi-Yi, Wang, Li-Min, Mammadov, Musa, Lou, Hua, Sun, Ming-Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515026/ https://www.ncbi.nlm.nih.gov/pubmed/33267251 http://dx.doi.org/10.3390/e21050537 |
Ejemplares similares
-
Screening drug-target interactions with positive-unlabeled learning
por: Peng, Lihong, et al.
Publicado: (2017) -
Gene function prediction using labeled and unlabeled data
por: Zhao, Xing-Ming, et al.
Publicado: (2008) -
Positive-Unlabeled Learning for Pupylation Sites Prediction
por: Jiang, Ming, et al.
Publicado: (2016) -
Target Tracking and Classification from Labeled and Unlabeled Data in Wireless Sensor Networks
por: Yoo, Jaehyun, et al.
Publicado: (2014) -
Positive-unlabeled learning for disease gene identification
por: Yang, Peng, et al.
Publicado: (2012)