Cargando…
Parameter Estimation with Data-Driven Nonparametric Likelihood Functions
In this paper, we consider a surrogate modeling approach using a data-driven nonparametric likelihood function constructed on a manifold on which the data lie (or to which they are close). The proposed method represents the likelihood function using a spectral expansion formulation known as the kern...
Autores principales: | Jiang, Shixiao W., Harlim, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515048/ https://www.ncbi.nlm.nih.gov/pubmed/33267273 http://dx.doi.org/10.3390/e21060559 |
Ejemplares similares
-
Data-driven computational methods: parameter and operator estimations
por: Harlim, John
Publicado: (2018) -
The nonparametric maximum likelihood estimator for middle-censored data
por: Shen, Pao-Sheng
Publicado: (2011) -
Information bounds and nonparametric maximum likelihood estimation
por: Groeneboom, Piet, et al.
Publicado: (1992) -
Nonparametric maximum likelihood estimation for the multisample Wicksell corpuscle problem
por: Chan, Kwun Chuen Gary, et al.
Publicado: (2016) -
Nonparametric functional estimation
por: Prakasa Rao, Bhagavatula L S
Publicado: (1983)