Cargando…
An Early Fault Diagnosis Method of Rolling Bearings on the Basis of Adaptive Frequency Window and Sparse Coding Shrinkage
Early fault information of rolling bearings is weak and often submerged by background noise, easily leading to misdiagnosis or missed diagnosis. In order to solve this issue, the present paper puts forward a fault diagnosis method on the basis of adaptive frequency window (AFW) and sparse coding shr...
Autores principales: | Wan, Shuting, Peng, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515074/ https://www.ncbi.nlm.nih.gov/pubmed/33267298 http://dx.doi.org/10.3390/e21060584 |
Ejemplares similares
-
Simultaneously Low Rank and Group Sparse Decomposition for Rolling Bearing Fault Diagnosis
por: Zheng, Kai, et al.
Publicado: (2020) -
Rolling Bearing Fault Monitoring for Sparse Time-Frequency Representation and Feature Detection Strategy
por: Tang, Jiahui, et al.
Publicado: (2022) -
Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network
por: Zhang, Xiong, et al.
Publicado: (2023) -
Blind Fault Extraction of Rolling-Bearing Compound Fault Based on Improved Morphological Filtering and Sparse Component Analysis
por: Xie, Wensong, et al.
Publicado: (2022) -
Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
por: Chao, Ko-Chieh, et al.
Publicado: (2022)