Cargando…
Kernel Risk-Sensitive Mean p-Power Error Algorithms for Robust Learning
As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing. However, the highly non-convex nature of C-Loss results in performance degradation. To address this issue, a conv...
Autores principales: | Zhang, Tao, Wang, Shiyuan, Zhang, Haonan, Xiong, Kui, Wang, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515077/ https://www.ncbi.nlm.nih.gov/pubmed/33267302 http://dx.doi.org/10.3390/e21060588 |
Ejemplares similares
-
Recursive Minimum Complex Kernel Risk-Sensitive Loss Algorithm
por: Qian, Guobing, et al.
Publicado: (2018) -
A Robust Diffusion Minimum Kernel Risk-Sensitive Loss Algorithm over Multitask Sensor Networks
por: Li, Xinyu, et al.
Publicado: (2019) -
Kernel learning algorithms for face recognition
por: Li, Jun-Bao, et al.
Publicado: (2013) -
Differential privacy fuzzy C-means clustering algorithm based on gaussian kernel function
por: Zhang, Yaling, et al.
Publicado: (2021) -
Kernel Probabilistic K-Means Clustering
por: Liu, Bowen, et al.
Publicado: (2021)