Cargando…
Competitive Particle Swarm Optimization for Multi-Category Text Feature Selection
Multi-label feature selection is an important task for text categorization. This is because it enables learning algorithms to focus on essential features that foreshadow relevant categories, thereby improving the accuracy of text categorization. Recent studies have considered the hybridization of ev...
Autores principales: | Lee, Jaesung, Park, Jaegyun, Kim, Hae-Cheon, Kim, Dae-Won |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515086/ https://www.ncbi.nlm.nih.gov/pubmed/33267316 http://dx.doi.org/10.3390/e21060602 |
Ejemplares similares
-
Multi-Population Genetic Algorithm for Multilabel Feature Selection Based on Label Complementary Communication
por: Park, Jaegyun, et al.
Publicado: (2020) -
Multi/Many-Objective Particle Swarm Optimization Algorithm Based on Competition Mechanism
por: Yang, Wusi, et al.
Publicado: (2020) -
A clustering-based competitive particle swarm optimization with grid ranking for multi-objective optimization problems
por: Ye, Qianlin, et al.
Publicado: (2023) -
Selectively-informed particle swarm optimization
por: Gao, Yang, et al.
Publicado: (2015) -
Feature Selection Based on Adaptive Particle Swarm Optimization with Leadership Learning
por: Ye, Zhiwei, et al.
Publicado: (2022)